51 research outputs found

    The MAC data rate of mobile WiMAX

    Get PDF

    Internet on the train

    Get PDF

    The history of WiMAX: a complete survey of the evolution in certification and standarization for IEEE 802.16 and WiMAX

    Get PDF
    Most researchers are familiar with the technical features of WiMAX technology but the evolution that WiMAX went through, in terms of standardization and certification, is missing and unknown to most people. Knowledge of this historical process would however aid to understand how WiMAX has become the widespread technology that it is today. Furthermore, it would give insight in the steps to undertake for anyone aiming at introducing a new wireless technology on a worldwide scale. Therefore, this article presents a survey on all relevant activities that took place within three important organizations: the 802.16 Working Group of the IEEE (Institute of Electrical and Electronics Engineers) for technology development and standardization, the WiMAX Forum for product certification and the ITU (International Telecommunication Union) for international recognition. An elaborated and comprehensive overview of all those activities is given, which reveals the importance of the willingness to innovate and to continuously incorporate new ideas in the IEEE standardization process and the importance of the WiMAX Forum certification label granting process to ensure interoperability. We also emphasize the steps that were taken in cooperating with the ITU to improve the international esteem of the technology. Finally, a WiMAX trend analysis is made. We showed how industry interest has fluctuated over time and quantified the evolution in WiMAX product certification and deployments. It is shown that most interest went to the 2.5 GHz and 3.5GHz frequencies, that most deployments are in geographic regions with a lot of developing countries and that the highest people coverage is achieved in Asia Pacific. This elaborated description of all standardization and certification activities, from the very start up to now, will make the reader comprehend how past and future steps are taken in the development process of new WiMAX features

    Performance analysis of WiMAX for mobile applications

    Get PDF
    The goal of this paper is to investigate the performance of a mobile WiMAX system for various settings of its physical-layer parameters and for realistic propagation channels. For this, a physical layer model of IEEE 802.16e is developed in software. Different propagation channels are implemented, such as the Rayleigh channel and the SUI channel models. Moreover, a tapped delay line channel model is developed for a specific area in Ghent (Belgium) using raytracing software. For this area, the maximum achievable range of a realistic mobile WiMAX system is found to be 2.7 km. Additionally, the performance gain of MIMO systems with diversity is investigated. The diversity gain of a 2x2 MIMO Alamouti diversity scheme is found to vary between 3 and 5.5 dB

    FORGE enabling FIRE facilities for the eLearning community

    Get PDF
    International audienceMany engineering students at third-level institutions across the world will not have the advantage of using real-world experimentation equipment, as the infrastructure and resources required for this activity are too expensive. This paper explains how the FORGE (Forging Online Education through FIRE) FP7 project transforms Future Internet Research and Experimentation (FIRE) testbed facilities into educational resources for the eLearning community. This is achieved by providing a framework for remote experimentation that supports easy access and control to testbed infrastructure for students and educators. Moreover, we identify a list of recommendations to support development of eLearning courses that access these facilities and highlight some of the challenges encountered by FORGE
    corecore